MthSc 440, H440, 640 – Linear Programming

instructor:	Dr. Douglas Shier	
	Martin Hall, O-120	
phone:	(864) 656-1100	
office hrs:	M 1:25-2:25, Tu 12:30-1:30,	
	W 11:15-12:15, or by appointment	
email:	shierd@clemson.edu	

Excerpt from the Syllabus

Homework:25%Hour Tests (2):40%Final exam:35% (May 3)

Learning and practice materials:

- Class Notes: MTHSC 440, Linear Programming, Campus Copy Shop.
- Supplementary Handouts: formulation and computational exercises

Course Outline

- Formulations
- Linear Programming models
- Optimality conditions
- The Simplex algorithm
- Refinements
- Duality theory
- KKT conditions
- Sensitivity analysis
- Dual Simplex algorithm
- Network flow models

Optimization models

- are used to find the best configuration of processes, systems, products, etc.
- rely on a theory developed primarily in the past 50 years
- have been applied to many industrial, financial, biological, and military problems:
 - refining processes
 - crew scheduling
 - forest management
 - law enforcement
- yield a more efficient use of budget/resources or a higher revenue

Success stories

Source: http://www.informs.com
(see also http://www.ScienceOfBetter.org)

Year	Company	Resulta
86	Eletrobras (hydroelectric energy)	43M\$ saved
90	Taco Bell (human resources)	7.6M\$ saved
92	Harris semicond. prod. planning	$50\% \rightarrow 95\%$ orders "on time"
95	GM – Car Rental	+50M\$
96	HP printers — re-designed prod.	2x production
99	IBM — supply chain	750M\$ saved
00	Syngenta — corn production	5M\$ saved
01	Ford — vehicle prototypes	250M\$ saved

A simple example

- You work at a company that sells food in tin cans and are charged with designing the next generation can, which is a cylinder made of tin.
- The can must contain V = 20 cu. inches of liquid.
- Cut and solder tin to produce cylindrical cans.
- Tin is expensive, so we want to use as little as possible.
- \Rightarrow Design a cylinder with volume V using as little tin (i.e., total area) as possible.

Example

If we knew radius *r* and height *h*, • the volume would be $\pi r^2 h$ • qty of tin would be $2\pi r^2 + 2\pi r h$ $\pi r^2 h$ must be $V = 20in^3 \Rightarrow h = \frac{V}{\pi r^2}$

Rewrite the quantity of tin as $Q(\mathbf{r}) = 2\pi \mathbf{r}^2 + 2\pi \mathbf{r} \frac{V}{\pi \mathbf{r}^2}$, or

$$Q(\mathbf{r}) = 2\pi \mathbf{r}^2 + \frac{2V}{\mathbf{r}}$$

 \Rightarrow Find the minimum of $Q(\mathbf{r})$ — a calculus problem!

Minimize the quantity of tin

Your first optimization model

Variables	<i>r</i> : radius of the can's base	
	<i>h</i> : height of the can	
Objective	$2\pi rh + 2\pi r^2$ (minimize)	
Constraints	$\pi r^2 h = V$	
	$h \ge 0$	
	$r \ge 0$	

Optimization models, in general, have

Variables: Height and radius, number of trucks, etc. — the *unknowns* of the problem.

Constraints: Physical, explicit ($V = 20in^3$), imposed by physical laws, budget limits, ...

They define <u>all</u> and the <u>only</u> values of the variables that give possible solutions.

Objective function: what the boss really cares about. Quantity of tin, total cost of trucks, total estimated revenue, \ldots – a function of the variables.

The general optimization problem

Consider a vector $x \in \mathbb{R}^n$ of variables.

An optimization problem can be expressed as:

$$\begin{array}{lll} \mathbf{P}: & \mbox{minimize} & f_0(x) \\ & \mbox{subject to} & f_1(x) \leq b_1 \\ & f_2(x) = b_2 \\ & & \vdots \\ & f_m(x) \geq b_m \end{array}$$

In this class we concentrate on linear optimization problems (*linear programs*).