MthSc 440, H440, 640 - Linear Programming

instructor: Dr. Douglas Shier
Martin Hall, O-120
phone: (864) 656-1100
office hrs: M 1:25-2:25, Tu 12:30-1:30,
W 11:15-12:15, or by appointment
email:
shierd@clemson.edu

Excerpt from the Syllabus

$$
\begin{array}{lll}
\text { Homework: } & 25 \% \\
\text { Hour Tests (2): } & 40 \% & \\
\text { Final exam: } & 35 \% & \text { (May 3) }
\end{array}
$$

Learning and practice materials:

- Class Notes: MTHSC 440, Linear Programming, Campus Copy Shop.
- Supplementary Handouts: formulation and computational exercises

Course Outline

- Formulations
- Linear Programming models
- Optimality conditions
- The Simplex algorithm
- Refinements
- Duality theory
- KKT conditions
- Sensitivity analysis
- Dual Simplex algorithm
- Network flow models

Optimization models

- are used to find the best configuration of processes, systems, products, etc.
- rely on a theory developed primarily in the past 50 years
- have been applied to many industrial, financial, biological, and military problems:
- refining processes
- crew scheduling
- forest management
- law enforcement
- yield a more efficient use of budget/resources or a higher revenue

Success stories

```
Source: http://www.informs.com
(see also http://www.ScienceOfBetter.org)
```

Year	Company	Resulta
86	Eletrobras (hydroelectric energy)	$43 \mathrm{M} \$$ saved
90	Taco Bell (human resources)	$7.6 \mathrm{M} \$$ saved
92	Harris semicond. prod. planning	$50 \% \rightarrow 95 \%$ orders "on time"
95	GM - Car Rental	$+50 \mathrm{M} \$$
96	HP printers - re-designed prod.	$2 \times$ production
99	IBM - supply chain	$750 \mathrm{M} \$$ saved
00	Syngenta - corn production	$5 \mathrm{M} \$$ saved
01	Ford - vehicle prototypes	$250 \mathrm{M} \$$ saved

A simple example

- You work at a company that sells food in tin cans and are charged with designing the next generation can, which is a cylinder made of tin.
- The can must contain $V=20 \mathrm{cu}$. inches of liquid.
- Cut and solder tin to produce cylindrical cans.
- Tin is expensive, so we want to use as little as possible.
\Rightarrow Design a cylinder with volume V using as little tin (i.e., total area) as possible.

Example

If we knew radius r and height h,

- the volume would be $\pi r^{2} h$
- qty of tin would be $2 \pi r^{2}+2 \pi r h$ $\pi r^{2} h$ must be $V=20 \mathrm{in}^{3} \Rightarrow h=\frac{V}{\pi r^{2}}$

Rewrite the quantity of tin as $Q(r)=2 \pi r^{2}+2 \pi r \frac{V}{\pi r^{2}}$, or

$$
Q(r)=2 \pi r^{2}+\frac{2 V}{r}
$$

\Rightarrow Find the minimum of $Q(r)$ - a calculus problem!

Minimize the quantity of tin

Your first optimization model

Variables	r : radius of the can's base h : height of the can
Objective	$2 \pi r h+2 \pi r^{2}$ (minimize)
Constraints	$\pi r^{2} h=V$
	$h \geq 0$
	$r \geq 0$

Optimization models, in general, have

Variables: Height and radius, number of trucks, etc.

- the unknowns of the problem.

Constraints: Physical, explicit ($V=20 \mathrm{in}^{3}$), imposed by physical laws, budget limits, ...
They define all and the only values of the variables that give possible solutions.
Objective function: what the boss really cares about. Quantity of tin, total cost of trucks, total estimated revenue, ... - a function of the variables.

The general optimization problem

Consider a vector $x \in \mathbb{R}^{n}$ of variables.
An optimization problem can be expressed as:

$$
\begin{array}{cc}
\text { P: } & \text { minimize } \\
& f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq b_{1} \\
& f_{2}(x)=b_{2} \\
& \vdots \\
& f_{m}(x) \geq b_{m}
\end{array}
$$

In this class we concentrate on linear optimization problems (linear programs).

